
Easy StoreKit for iOS PKSArena.com

Easy StoreKit for iOS

An easy to integrate, extensible plugin for StoreKit (In-App Purchase) integration
in Unity3D

Document History

Date Author Version

23 August 2013 Preet Kamal Singh Minhas Initial Release

Easy StoreKit for iOS PKSArena.com

Contents

Document History __ 1

Contents __ 2

Introduction ___ 3

Integrating Easy StoreKit with your Unity3D project _________________________ 3

Using Easy StoreKit __ 5

Easy StoreKit exposed methods ___ 5

Easy StoreKit events ___ 6
Sample method for configuring events __ 7

Advanced ___ 8
Plugin Architecture ___ 8
Implementing server side receipt verification ___ 8

Suggestions/Queries? ___ 8

Easy StoreKit for iOS PKSArena.com

Introduction
Integrating In-App Purchases in Unity3D can be a complicated process. Easy
StoreKit aims to simplify this process by providing an easy to use API and an
easy to understand plugin design. Easy StoreKit comes with full source code so
that advanced users can easily modify the Objective-C/C code and tailor the
plugin to work as per their needs.
Easy StoreKit handles all of the heavy lifting associated with In-App Purchases.
However, this plugin cannot handle the required iTunesConnect setup process.
Before using this plugin, you must set up a bundle identifier for your game and
configure your app with In App Purchase identifiers. Please find below links to
some wonderful guides and resources prepared by Apple:

1. Apple Technical Note TN2259
2. In-App Purchase Programming Guide

Integrating Easy StoreKit with your Unity3D project
1. Once you have imported the Easy StoreKit package into your project, you

must ensure that Assets->Plugins->iOS folder contains the files listed in
the screenshot below:

2. It is mandatory that your scene has a GameObject with the
EasyStoreKit.cs script attached to it. This script receives all the callbacks
from the native code.

3. (One time step only) Build your project and then add the
StoreKit.framework to your generated Xcode project.

https://developer.apple.com/library/ios/technotes/tn2259/_index.html#//apple_ref/doc/uid/DTS40009578
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StoreKitGuide/Introduction/Introduction.html

Easy StoreKit for iOS PKSArena.com

Easy StoreKit for iOS PKSArena.com

4. You are now ready to use Easy StoreKit!

Using Easy StoreKit
1. The EasyStoreKit.cs script must be attached to any one GameObject in the

scene.
2. Initialize StoreKit by calling

EasyStoreKit.AssignIdentifiers(string[] productIdentifiers);
This method must be called only once in your scene.

3. Configure the event handlers. StoreKit is an asynchronous API. Hence, the
various callbacks are raised as events by the Easy StoreKit plugin. Refer
Easy StoreKit events.

4. Verify whether the user is allowed to make payments by calling
EasyStoreKit.CanMakePayments(); This method returns a boolean value to
indicate whether the user is allowed to make payments or not.

5. Load the products using
EasyStoreKit.LoadProducts();
Once the products have been loaded, the productsLoadedEvent will be
raised.

6. Buy a product by calling
EasyStoreKit.BuyProductWithIdentifier(string productIdentifier, int
quantity);
This method will return true/false to indicate whether a valid product
identifier had been supplied.
Based on the transaction status of the purchase, any of the following
events might be called:
a) transactionPurchasedEvent
b) transactionFailedEvent
c) transactionCancelledEvent
You must provide the relevant content to the user when the
transactionPurchasedEvent is called. Also, in case of non-consumable
products, it is recommended to save the purchased state of this identifier
for later use.

7. To restore any previously purchased non-consumable products, you can
call
EasyStoreKit.RestoreProducts();
The transactionRestoredEvent is called for every restored transaction.
If the restore process completes successfully, restoreCompletedEvent is
called. Otherwise, the restoreFailedEvent is called.

Easy StoreKit exposed methods
//Initializes the StoreKit using the provided identifiers
public static void AssignIdentifiers(string[] identifiers)

//Checks whether the user is allowed to make payments

Easy StoreKit for iOS PKSArena.com

public static bool CanMakePayments();

//Loads the products from the App Store
public static void LoadProducts();

//Buy the product identified by the identifier and in the quantity specified.
Returns true if a valid product identifier is supplied as an argument and false
otherwise.
public static bool BuyProductWithIdentifier(string identifier, int quantity);

//Restores already purchased non-consumable items
public static void RestoreProducts();

Easy StoreKit events
//The delegate definitions
public delegate void ProductsLoadedEventHandler(StoreKitProduct[] products);
public delegate void TransactionPurchasedEventHandler(string
productIdentifier);
public delegate void TransactionFailedEventHandler(string
productIdentifier,string errorMessage);
public delegate void TransactionRestoredEventHandler(string
productIdentifier);
public delegate void TransactionCancelledEventHandler(string
productIdentifier);
public delegate void RestoreFailedEventHandler(string errorMessage);
public delegate void RestoreCompletedEventHandler();

//Events
//Called when the products have been loaded
public static event ProductsLoadedEventHandler productsLoadedEvent;
//Called when the transaction has been successfully purchased
public static event TransactionPurchasedEventHandler
transactionPurchasedEvent;
//Called when the transaction has failed
public static event TransactionFailedEventHandler
transactionFailedEvent;
//Called when the transaction has been cancelled by the user
public static event TransactionCancelledEventHandler
transactionCancelledEvent;
//Called when any product is restored
public static event TransactionRestoredEventHandler
transactionRestoredEvent;
//Called when the restore process is complete
public static event RestoreCompletedEventHandler
restoreCompletedEvent;
//Called when the restore process has failed
public static event RestoreFailedEventHandler restoreFailedEvent;

Easy StoreKit for iOS PKSArena.com

Sample method for configuring events
private function ConfigureStoreKitEvents() {
 EasyStoreKit.productsLoadedEvent += ProductsLoaded;
 EasyStoreKit.transactionPurchasedEvent += TransactionPurchased;
 EasyStoreKit.transactionFailedEvent += TransactionFailed;
 EasyStoreKit.transactionRestoredEvent += TransactionRestored;
 EasyStoreKit.transactionCancelledEvent += TransactionCancelled;
 EasyStoreKit.restoreCompletedEvent += RestoreCompleted;
 EasyStoreKit.restoreFailedEvent += RestoreFailed;
}

function ProductsLoaded(products : StoreKitProduct[]) {
 //refresh the UI
}

function TransactionPurchased(productIdentifier : String) {
 //Unlock feature based on the identifier
}

function TransactionFailed(productIdentifier : String, errorMessage : String) {
 //display the error message to the user
}

function TransactionRestored(productIdentifier : String) {
 //Unlock feature based on the identifier restored.
}

function TransactionCancelled(productIdentifier : String) {
 //Remove any activity indicators as the user has cancelled the transaction
 //Do not display any message to the user
}

function RestoreCompleted() {
 //change ui state
}

function RestoreFailed(errorMessage : String) {
 //change ui state and display error message
}

Easy StoreKit for iOS PKSArena.com

Advanced

Plugin Architecture
PKS_IAPCWrapper : C Wrapper over the Objective-C methods
PKS_IAPPlugin : Methods to expose StoreKit functionality as a plugin
PKS_IAPHelper : Contains the implementation for iOS StoreKit
PKS_Utility : Utility methods to convert char* to NSString* and vice versa.

Implementing server side receipt verification
Provide an implementation for the method
-(BOOL) verifyTransaction:(SKPaymentTransaction*)transaction in
PKS_IAPHelper.m

Suggestions/Queries?
Please write in to mobile@pksarena.com

mailto:mobile@pksarena.com?subject=Easy%20StoreKit

	Document History
	Contents
	Introduction
	Integrating Easy StoreKit with your Unity3D project
	Using Easy StoreKit
	Easy StoreKit exposed methods
	Easy StoreKit events
	Sample method for configuring events

	Advanced
	Plugin Architecture
	Implementing server side receipt verification

	Suggestions/Queries?

